

 MPT Magnetic Encoder Datasheet v0.5

1

MPT Magnetic Encoder

MPT magnetic encoder is super compact product, it uses the pattern

magnetic technology of KingKong Technology, high precision

measurements are possible in extremely limited volumes and each of

them infinitely approaching the resolution and accuracy of photoelectric

encoder，and has a strong anti-environmental interference ability.

MPT is driven by magnetoelectric technology and has a unique

interference shielding technology. There are multiple high-precision

magnetic field sensors inside the encoder to measure the filed strength

changes of the rotor magnetic ring, and it is formed by the precision

calibration technology provided by KingKong Technology. Each product

has unique magnetic field calibration data at the factory, providing the

best measurement accuracy.

The unique tolerances fit installation method with rotor and stator

simplifies the installation for users, but also guarantees the

measurement accuracy.

The separated magnetoelectric solution can ensure that the encoder can

avoid the interference of external environmental factors such as vibration,

dust, oil pollution, even when it is running at ultra-high speed, without

affecting the accuracy and service life.

Ultra-thin body with hollow shaft could easily suit with any application.

● 24-bit absolute output

● ±0.01° accuracy

● Ultra-compact (Ring width 5mm)

● Models for every 5mm on diameter

● Stator and rotor tolerance fit

installation

● Magnetic interference shielding

● Hollow structure

● Permissible speed 8,000 rpm

● Unique data calibration

● Multi-turn with battery mode or

flash

● Various output interfaces

● Resistance to various

environmental disturbances

2

Models

MPT-20-30-A-24-S-N-A-M

Multi-turn keep counting with battery

supply after power-off
24BM –

Multi-turn clears on power-off, and

recount from zero when power-on
24M –

Rotor inner diameter
Refer to Size

xx – Thread type

xxB – Bonding type

Output type

A – absolute

Output interface

S – SSI(1)

B – BISS-C

R – R485

A – R422

T – T485 (17-bit Tamagawa compatible)(2)

T – T485 (23-bit Tamagawa compatible)(2)

D – BUS (high speed bus)

P – PERIOD (periodic send)

Input voltage

N – 5V

Operating temperature

A – -40 ~ 85 °C

B – -40 ~ 105 °C

C – -40 ~ 125 °C

Addition

M – no addition

Baud rate: interface in R/A

(1) SSI interface has no CRC check, it is recommended to use BISS-C instead on the same hardware to get more reliability

(2) Tamagawa compatible select 17bit ,the output parameter is 17M-T、17BM-T、17FM-T;Select 23bit, the output parameter

is 23M-T、23BM-T、23FM-T

Stator outer diameter
Refer to Size

xx – Thread type

xxB – Bonding type

Output parameter

24 – 24 bits single-turn

Multi-turn remains and rotation is

limited to ±90°, no battery needed
24FM –

3

Size

Series Size Rotor type Stator type Inner rotor
thread

Rotor ID(H7) Stator fit
OD

（h7）

Stator
mounting

PD

Stator back
install

directly(2)
Connector model Overall

height A B C

10

MPT-10-20 Thread Front M10x0.4mm 9 20 16.6 - SM06B-XSRS-ETB

6.7

MPT-10B-20 Bonding Front - 9 10 12.6 20 16.6 - SM06B-XSRS-ETB
MPT-10-20H Thread Front/Back M10x0.4mm 9 20 16.6 ✓ SM06B-XSRS-ETB
MPT-10B-20H Bonding Front/Back - 9 10 12.6 20 16.6 ✓ SM06B-XSRS-ETB

15

MPT-13-25 Thread Front M13x0.4mm 12 25 21.6 - SM06B-XSRS-ETB
MPT-13-25H Thread Front/Back M13x0.4mm 12 25 21.6 ✓ SM06B-XSRS-ETB
MPT-14-25 Thread Front M14x0.4mm 13 25 21.6 - SM06B-XSRS-ETB
MPT-14-25H Thread Front/Back M14x0.4mm 13 25 21.6 ✓ SM06B-XSRS-ETB
MPT-15-25 Thread Front M15x0.4mm 14 25 21.6 - SM06B-XSRS-ETB
MPT-15B-25 Bonding Front - 14 15 17.6 25 21.6 - SM06B-XSRS-ETB
MPT-15-25H Thread Front/Back M15x0.4mm 14 25 21.6 ✓ SM06B-XSRS-ETB
MPT-15B-25H Bonding Front/Back - 14 15 17.6 25 21.6 ✓ SM06B-XSRS-ETB

20

MPT-20-30 Thread Front M20x0.4mm 19 30 26.6 - SM08-SURS-TF
MPT-20B-30 Bonding Front - 19 20 22.6 30 26.6 - SM08-SURS-TF
MPT-20-30H Thread Front/Back M20x0.4mm 19 30 26.6 ✓ SM08-SURS-TF
MPT-20B-30H Bonding Front/Back - 19 20 22.6 30 26.6 ✓ SM08-SURS-TF

25

MPT-25-35 Thread Front M25x0.4mm 24 35 31.6 - SM08-SURS-TF
MPT-25B-35 Bonding Front - 24 25 27.6 35 31.6 - SM08-SURS-TF
MPT-25-35H Thread Front/Back M25x0.4mm 24 35 31.6 ✓ SM08-SURS-TF
MPT-25B-35H Bonding Front/Back - 24 25 27.6 35 31.6 ✓ SM08-SURS-TF

30

MPT-30-40 Thread Front M30x0.4mm 29 40 36.6 - SM08-SURS-TF
MPT-30B-40 Bonding Front - 29 30 32.6 40 36.6 - SM08-SURS-TF
MPT-30-40H Thread Front/Back M30x0.4mm 29 40 36.6 ✓ SM08-SURS-TF
MPT-30B-40H Bonding Front/Back - 29 30 32.6 40 36.6 ✓ SM08-SURS-TF

35

MPT-35-45 Thread Front M35x0.4mm 34 45 41.6 - SM08-SURS-TF
MPT-35B-45 Bonding Front - 34 35 37.6 45 41.6 - SM08-SURS-TF
MPT-35-45H Thread Front/Back M35x0.4mm 34 45 41.6 ✓ SM08-SURS-TF
MPT-35B-45H Bonding Front/Back - 34 35 37.6 45 41.6 ✓ SM08-SURS-TF

Download 3D models: https://kingkong.tech/encoder/MPT

https://kingkong.tech/encoder/MPT

4

Drawings

When installing the stator, you can use M1.6 screws to pass through the M2 threaded holes, or you can fasten M2 threads by M2 screws. When

installing the rotor, use special tools to tighten it. For details, please refer to the “MPT Design and Installation Recommendations”

A

A
Arrow as Pin1

Connector

5

Electrical connections

Connectors

 Wire-to-Board Connector

Model See the size

Type Wire to board

Wire 4PxAWG32 teflon twisted pair

Pin descriptions

Pin Color

S B A R T D P

SSI BISS-C RS422 RS485 T485 BUS PERIOD

1 Gray Battery -

2 White Battery +

3 Orange Data - SLO - TX - - - - TX -

4 Yellow Data + SLO + TX + - - - TX +

5 Green Clock - MA - RX - B B B -

6 Blue Clock + MA + RX + A A A -

7 Black 0V（GND）

8 Red +5V

* Battery +/- only in battery multiturn (BM) version

* The battery- is connected to the internal GND of the encoder

* The shield is recommended to be grounded at the driver side

6

Parameters

System

Installation method Axial hollow

Accuracy ±0.01˚

Electrical

Power supply 4.5 ~ 5.5 V

Battery 2.7 ~ 3.6 V

Startup time 15 ms

Connection Wire to board connector

Current ≈ 100 mA

Battery mode current ≈ 6 μA (Test on battery voltage 3.6V，in low power and static mode)

ESD resistance HBM, max. ±2 kV

CDM, max. ±1 kV

Mechanical

Rotor material Stainless steel

Stator material Aluminum alloy

Environmental

Operating temperature -40 ~ 85 ℃ / -40 ~ 105 ℃ / -40 ~ 125 ℃

7

Features

Maximum speed

With non-contact structure, there is no friction between the rotor and the stator, and the

maximum speed can be extremely high, so it can be applied to high speed applications.

Environmental interference

The measurement method of the MBS can bring a certain resistance to vibration, and will not

damage the encoder. It has strong anti-interference ability against non-magnetic objects such

as oil and dust.

External magnetic field interference
The MBT encoder has a unique anti-electromagnetic interference technology. The

electromagnetic shielding shell can shield the electromagnetic interference transmitted from

the environment (such as motor coils), and the magnetic field strength of the magnetic ring is

generally much greater than the external interference magnetic field. The combination of the

shield and internal magnetic field can stable against external interferences.

Accuracy

During the magnetization process of the magnetic ring, the problem of low consistency of the

magnetic field may occur, however each encoder of KingKong Technology has the unique data

information of its corresponding magnetic ring after being calibrated at the factory. Therefore,

the error caused by the magnetic field consistency of the magnetic ring can be significantly

reduced.

8

Specification

Format selection

Calculation parameters

Angle resolution 24 bit

Rotation speed 8,000 rpm

Update frequency 50 kHz

Repeatable accuracy 0 ~ ±1 bit (change by angle bits selection)

Output interface SSI、BISS-C、RS485、RS422、T485、BUS、PERIOD

Single-turn

Output angle data

Normal multi-turn

Output the data of angle and

multi-turn
The number of turns cannot be kept after power off, and it will reset to zero

after repower on

Battery multi-turn

Output the data of angle and multi-

turn
After the power supply is off, the battery is take over, and encoder enters to the

low power mode. The rotation of the motor can still be measured, and the

number of turns could be read after the power is recovered

Flash multi-turn

Output the data of angle and multi-

turn

After the power supply is off, the multi-turns will be recorded in flash,
mechanical rotation must be guaranteed in ±90° range, the multi-turns data is

invalid if out of the range

9

SSI protocol interface

Electrical connection diagram：

It is a four-wire interface, include the differential lines of Clock and Data. And the terminal resistors of the

Clock lines have been integrated into the encoder. The users only need to configure terminal resistors or

choose other impedance matching schemes for Data lines.

Sequence diagram：

In this protocol, when the first falling edge of the Clock arrives, the system latches current data. The data

is written to Data line on the rising edge of each Clock from the MSB, and on the controller side, the data

on Data line is read from the falling edge of Clock, and so on until the LSB is read by the controller.

After the transfer is complete, when the 𝑡𝑡𝑀𝑀 transfer time ends , the Data line goes high and the Clock

signal must remain high until the next read is allowed, i.e. after 𝑡𝑡𝑃𝑃 time. 𝑡𝑡𝐶𝐶𝐶𝐶 must be less than 𝑡𝑡𝑚𝑚, and the

read can be terminated by making the time exceed 𝑡𝑡𝑚𝑚 while any read operation is in progress.

Timing Parameters：

Parameters Symbol Min value Typical value Max value

Clock period 𝑡𝑡𝐶𝐶𝐶𝐶 400 ns 14 μs

Clock frequency 1/𝑡𝑡𝐶𝐶𝐶𝐶 110 kHz 1.5 MHz(1)

Transmit timeout 𝑡𝑡𝑀𝑀 10 μs

Pause duration 𝑡𝑡𝑃𝑃 20 μs

(1) If the Clock can be held at the first low level for 500ns, the subsequent clock frequency can be up to 10MHz

Data

Clock

t CL

Start b(n) b(n-1) b(n-2) b1 b0 Idle b(n)

t M t P

SS
I

ControllerEncoder

10

Data format：

Bits b(23 + X) : b(8 + X) b(7 + X) : b8 b7 b6 b5 : b0

Length 16 bits X bits 1bit 1bit 6 bits

Data Multi-turn count(1) Angle Error bit Warning bit Status bit

(1) Multi-turn count is only available on multi-turn and battery multi-turn versions

For a detailed description of the status bit, see the Status section later.

SS
I

11

BISS-C protocol interface

BiSS-C Electrical connection diagram：

It is a four-wire interface, include the differential lines of MA and SLO. And the terminal resistors of the

MA lines have been integrated into the encoder. The users only need to configure terminal resistors or

choose other impedance matching schemes for SLO lines.

Timing diagram：

(1) Angle will be latched at the red point

The protocol uses MA as the synchronization clock, and the MA line is high when idle. When the first falling

edge of the synchronous clock arrives, the system latches the current data.

The communication will start on the first falling edge, encoder will configure SLO low on the second MA

rising edge. After the “0”, the MSB will be written to the SLO line on each rising edge of MA, and on

controller side, the data on Data line is read on the falling edge of Clock, and so on until the LSB is read

by the controller.

MA+ MA

MA-

SLO+

SLO-SLO

ControllerEncoder

<

SLO

MA

tMA

Ack Start

tACK

“0” b(n) b(n-1) b1 b0 Timeout Ack

Idle

tM tP

BI
SS

-C

12

Timing parameters:

Parameters Symbol Min Typical Max

Clock period 𝑡𝑡𝐶𝐶𝐶𝐶 400 ns 14 μs

Clock frequency 1/𝑡𝑡𝐶𝐶𝐶𝐶 120 kHz 2.5 MHz(1)

ACK length 𝑡𝑡𝐴𝐴𝐴𝐴𝐴𝐴 5 bits

Transmit timeout 𝑡𝑡𝑀𝑀 10 μs

Pause duration 𝑡𝑡𝑃𝑃 20 μs

(1) Up to 10 MHz if the user can compensate for the delay between differential conversions with phase compensation
techniques

After the transfer is complete, when the 𝑡𝑡𝑀𝑀 transfer time is over, the SLO line goes high and the MA signal

must remain high until the next read is allowed, i.e. after 𝑡𝑡𝑃𝑃 time. 𝑡𝑡𝐶𝐶𝐶𝐶 must be less than 𝑡𝑡𝑚𝑚, and the read

can be terminated by making the time exceed 𝑡𝑡𝑚𝑚 while any read operation is in progress.

Data format:

Bits b(24 + X) : b(9 + X) b(8 + X) : b8 b7 b6 b5 : b0

Length 16 bits X bits 1bit 1bit 6 bits

Data Multi-turn count(1) Angle Error bit(2) Error bit(3) CRC(4)

(1) Multi-turn count is only available on multi-turn and battery multi-turn versions

(2) The error bit is valid at low level.

(3) The warn bit is valid at low level.

(4) The CRC polynomial is x6 + x1 + 1 (i.e. 0x43), According to the BISS-C protocol requirements, the calculated CRC
value will be inverted before send. Appendix CRC-6 calculations gives directly portable calculation codes for easy
reference

For a detailed description of the status bit, see the Status section later.

BI
SS

-C

13

RS485/RS422 protocol interface

RS485 Electrical connection diagram:

It is a differential two-wire interface, both wires need to be terminated with parallel termination resistors.

The terminal resistors have been integrated into the encoder. The users only need to configure terminal

resistors or choose other impedance matching schemes for the differential wires of the controller side.

RS422 Electrical connection diagram:

It is a four-wire interface, include the differential lines of TX and RX. And the terminal resistors of the

encoder RX lines have been integrated into the encoder. The users only need to configure terminal

resistors or choose other impedance matching schemes for TX lines.

The underlying protocol of both RS485 and RS422 is UART. Since this protocol has no clock line, the

encoder and controller must have the same transmission frequency and data format in order to ensure

proper signal transmission.

Protocol configuration:

Length Parity check Stop bit Stream control Byte order

8 bit - 1 - LSB first

ControllerEncoder

ControllerEncoder

RS
48

5/
RS

42
2

14

Baud rate supported (default A if not marked in additional and recommended B):

Code A B

Baud rate (Mbps) 0.1152 2.5

Sequence chart:

(1) Angle will be latched at the red point

Commands and data:

Com-

mand
Function

Output

parameter
N

Data（N Bytes）

B0 B1 B2 B3 B4 B5 B6 B7

0x30 set Zero(1) - 2 C CRC

0x31 get Position

24 4 A2 A1 A0 CRC
24M

6 M1 M0 A2 A1 A0 CRC 24BM
24FM

0x64 get
Position
+ Status

24 5 A2 A1 A0 S CRC
24M

7 M1 M0 A2 A1 A0 S CRC 24BM
24FM

0x74 get
Position +

Temperature(2)

24 6 A2 A1 A0 T1 T0 CRC
24M

8 M1 M0 A2 A1 A0 T1 T0 CRC 24BM
24FM

(1) Send the command “0x31" and then command "0x30" one after another, and repeat the combines ten times to set the zero

position. When the last command "0" is sent and the return count value is 10, the encoder will execute the set zero procedure.

(2) The temperature is the junction temperature of the chip.

Letters represented in above table:

M A C S T CRC

Multi-turn Angle Count for zero set Status Temperature(2) CRC(1)

For a detailed description of the status bit, see the Status section later.

(1) CRC byte (CRC polynomial is x8+x7+x4+x2+x1+1, See Appendix for calculation method CRC-8 table x8+x7+x4+x2+x1+1)

(2) The temperature calculation method is：int16_t temp = T0 | T1 << 8; float tempFloat = temp / 10.f; Unit °C

Example code：
If used 0x31，get uint8_t Buffer[7];

In use：

uint16_t multi = Buffer[0] << 8 | Buffer[1];

uint32_t angle = Buffer[2] << 16 | Buffer[3] << 8 | Buffer[4];

float angleFloat = angle / (float)(1 << 24) * 360;

Command B0 B1 B(N-1)

RS
48

5/
RS

42
2

15

T485 protocol interface
*This interface is compatible with the tamagawa protocol.

T485 Electrical connection diagram:

It is a differential two-wire interface, both wires need to be terminated with parallel termination resistors.

The terminal resistors have been integrated into the encoder. The users only need to configure terminal

resistors or choose other impedance matching schemes for the differential wires of the controller side.

T485 is based on RS485 and has a certain communication protocol. The interface receives a 1Byte

operation request data, returns the corresponding encoder data based on the requested data, and adds

CRC-8 to the end of the data for check.

Protocol configuration:

Data length Parity check Stop bit Stream control Bytes order

8 bit — 1 — LSB first

Sequence chart:

(1) Angle will be latched at the red point

Command:

Bits b7 ~ b3 b2 b1 b0

Data content Operation type 0 1 0

Return:

Bytes B0 B1 B(2 ~ n) B(n + 1)

Data content Command(1) Status Data CRC(2)

(1) The operation request returned is the same as the one sent

(2) CRC byte（CRC polynomial is x8 + 1, see CRC-8 calculate of Appendix for calculation method）

ControllerEncoder

Command B0 B1 B(N-1)

T4
85

16

B1 format:

Bits b7 b6 b5 b4 b3 b2 b1 b0

Data content 0 Transmit error Encoder error 0 0 0 0 0

B(2 ~ n), operation type and the corresponding data returned（A for angle; M for

Multi-turn; E for error）:

Operation type
Request n

Data returned

b7 b6 b5 b4 b3 B2 B3 B4 B5 B6 B7 B8 B9

0 0 0 0 0 Get angle 4 A0 A1 A2

1 0 0 0 1 Get multi-turn 4 M0 M1 M2

0 0 0 1 1 Get all data 9 A0 A1 A2 17 M0 M1 M2 E

1 1 0 0 0 Reset angle(3) 4 A0 A1 A2

0 1 1 0 0 Reset multi-turn(3) 4 A0 A1 A2

(1) An and Mn are left-aligned, i.e., if A is 17 bits of data, the higher 7 bits of A2 are 0

(2) If the operation type does not appear in the table of B (2~n), a communication error is triggered and the return data

is the same as the return data of the get angle request

(3) The reset of angle or multi-turn requires 10 consecutive requests for the corresponding operation to take effect

E, error byte (see the Status section later):

b7 b6 b5 b4 b3 b2 b1 b0

Battery lost Battery low voltage 0 0 0 0 0 0

For LED-related indications, please refer to the Status chapter.

T4
85

17

BUS (High speed bus) protocol interface

BUS Electrical connection diagram:

It is a differential two-wire interface, both wires need to be terminated with parallel termination resistors.

The terminal resistors have been integrated into the encoder. The users only need to configure terminal

resistors or choose other impedance matching schemes for the differential wires of the controller side.

The protocol is the same as the 485 protocol level logic, the data is based on UART format, and the

operating frequency is 2.5 Mbps. the interface receives 1Byte operation request, returns the corresponding

encoder data and adds CRC-8 (x8+1) to the end of the data.

Version for select:

Angle bits Multi-turn bits Model number

XX
— XX-D

16 XXM-D

Protocol configuration:

Byte length Parity check Stop bit Stream control Bytes length

8 bit — 1 — LSB first

Sequence chart:

(1) Angle will be latched at the red point

Command:

Data bits b7 b6 ~ b5 b4 ~ b0

Data content Odd parity check Operation type Address

ControllerEncoder

Command B0 B1 B(N-1)

BU
S

18

Return data:

Bytes B0 B(1 ~ n) B(n + 1)

Data content Operation request Data CRC

B(1 ~ n), operation type and the corresponding data returned（A is angle; M is multi-

turn; C is set count; S is status ）:

Operation

type Request
Model version

n
Data

b6 b5 Angle bits Multi-turn bits B1 B2 B3 B4 B5 B6

0 0 Get data

≤16 — 3 S A0 A1

≤16 16 5 S A0 A1 M0 M1

>16 — 4 S A0 A1 A2

>16 16 6 S A0 A1 A2 M0 M1

0 1 Set zero

position

 2 S C

1 0 Set address 2 S C

Operation type
Request n

Data

b6 b5 B1 B2 B3

0 0 Get data 3 S A0 A1

0 1 Set zero position 2 S C

1 0 Set address 2 S C

For a detailed description of the status bit, see the Status section later.

Note :

(1) When the operation type does not appear in the table of B(1~n), such as 0b11, there will be no return response.

(2) C is the count data returned when the encoder is set, when it returns 10, it means that the setting will be executed
immediately (the process takes about 50ms maximum, during which the encoder will not respond to any command)

(3) The default address is 0x1F, i.e. 0b11111

Set zero position:

To ensure that the setting of the zero position is not mistakenly operated, it is necessary to send

the command of operation type 00, 01 in succession alternately, a total of ten groups (after each command

is sent, the encoder finishing replying must be waited, before sending the next command), in order to set

it successfully. The number of times still need to be sent based on the C value returned by the 01 command.

BU
S

19

Note:

(1) When the previous command of 01 is not 00, the sequence start requirement is not met and the C value is 0

(2) When the command before previous command of 01 is not 01, the sequence is not satisfied, the C value is 1, and the count
starts from there

Set ID:
To ensure that the setting ID is not mistakenly operated, it is necessary to send a certain sequence

of address values to make sure that the encoder has already enter the state of ID configuration, and

then configure the ID. For example, the address value is sent continuously as shown in the table below,

the next address value sent is twice the return value.

Address X 2 4 6 8 10 12 14 16 Y

C — — — 4 5 6 7 8 9 10

Note:

(1) X could be any value, Y is the actual address value want to be set

(2) The first three sets of data sent are not returned with any corresponding response, to prevent the bus from being
mistakenly triggered in the working state

(3) When another command is inserted, the returned C value of the next set command is 1, and the count starts from there

(4) When the sent address value does not match the sequence, the returned C value is 1, and the count restarts from 1

Bus devices:

The devices on the bus need got into “sleep” for a certain period of time when the received ID is not

their own, no responding to any commands on the bus, so as to prevent trigger the response ripples.

The sleep time is TSUSPEND, and the following table shows the calculation：

Angle

 bits

Multi-turn

bits
Number of bus sleep bytes /BSUSPEND

Time of bus sleep bytes /TSUSPEND

（us）

XX YY ceil(XX/8) + YY/8 + 4 BSUSPEND * (1 + 8 + 1) / 2.5

Take the 16M1-D model as an example: 𝑇𝑇𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 = �𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 �16
8
�+ 8

8
+ 4� ∗ 1+8+1

2.5
= 28𝑢𝑢𝑢𝑢

BU
S

20

Period sending protocol

PERIOD Electrical connection diagram:

It is a differential two-wire interface, both wires need to be terminated with parallel termination resistors.

The terminal resistors have been integrated into the encoder. The users only need to configure terminal

resistors or choose other impedance matching schemes for the differential wires of the controller side.

This protocol is based on the RS422 protocol, the only difference is that it actively sends data out through

the TX at 1khz and does not respond to any message, the encoder internally triggers the command “d”

 (0x64) periodically to send the corresponding data, refer to RS485/RS422 protocol interface.

ControllerEncoder

PE
RI

O
D

21

Status Bits
In SSI/BISS-C/RS485/RS422 protocol, the usage of status bit is consistent, when a warning or error occurs,

the warning bit or error bit will be set, and the user can specify the cause of the warning or error by viewing

the status bit information.

The location of error/warning in protocols:

 Error bit Warning bit

SSI b7 b6

BISS-C b13 b12

RS485/RS422 b7 b6

BUS b7 b6

PERIOD b7 b6

Status bit:

Location
For battery multiturn version only

b3 b2 b1 b0
b5 b4

Description Battery lost
Battery

low voltage

Large

magnetic

field

Weak

magnetic

field

Temperature

out of range

Over

speed

LED

flashing
✓ ✓ — — — —

In normal condition, the LED status light is green. When the warning bit is 1, the data is still valid, and the

LED turns yellow, but some parameters of status bit are close to their limit values, which can be viewed

through the status bit. When the error bit is 1, the data is no longer valid, and the LED turns red. And the

status bit shows specific error message.

The LED flashes in 1s intervals to alert the user to the occurrence of the corresponding error/warning

problem.

Battery-related status bits:

 b5 b4

Battery lost Battery low voltage

Warning is1 -
Battery

voltage<2.9V

Error bit is 1

The encoder is disconnected during a power failure or the battery

is too low, resulting in an interruption of the multiturn count and

thus untrustworthy multiturn data, and the multiturn is cleared if

this error occur

Battery

voltage<2.7V

Solution
Check the battery voltage supply, repower the encoder then this bit

will reset
Replace the battery

St
at

us

22

Appendix

CRC-8 Table(x8+x7+x4+x2+x1+1)
//poly = x8+x7+x4+x2+x1+1

uint8_t crcTable [256] = {

0x00, 0x97, 0xB9, 0x2E, 0xE5, 0x72, 0x5C, 0xCB, 0x5D, 0xCA, 0xE4, 0x73, 0xB8, 0x2F, 0x01, 0x96,0xBA, 0x2D, 0x03, 0x94,

0x5F, 0xC8, 0xE6, 0x71, 0xE7, 0x70, 0x5E, 0xC9, 0x02, 0x95, 0xBB, 0x2C,0xE3, 0x74, 0x5A, 0xCD, 0x06, 0x91, 0xBF, 0x28, 0xBE,

0x29, 0x07, 0x90, 0x5B, 0xCC, 0xE2, 0x75,0x59, 0xCE, 0xE0, 0x77, 0xBC, 0x2B, 0x05, 0x92, 0x04, 0x93, 0xBD, 0x2A, 0xE1, 0x76,

0x58, 0xCF,0x51, 0xC6, 0xE8, 0x7F, 0xB4, 0x23, 0x0D, 0x9A, 0x0C, 0x9B, 0xB5, 0x22, 0xE9, 0x7E, 0x50, 0xC7,0xEB, 0x7C, 0x52,

0xC5, 0x0E, 0x99, 0xB7, 0x20, 0xB6, 0x21, 0x0F, 0x98, 0x53, 0xC4, 0xEA, 0x7D,0xB2, 0x25, 0x0B, 0x9C, 0x57, 0xC0, 0xEE, 0x79,

0xEF, 0x78, 0x56, 0xC1, 0x0A, 0x9D, 0xB3, 0x24,0x08, 0x9F, 0xB1, 0x26, 0xED, 0x7A, 0x54, 0xC3, 0x55, 0xC2, 0xEC, 0x7B, 0xB0,

0x27, 0x09, 0x9E,0xA2, 0x35, 0x1B, 0x8C, 0x47, 0xD0, 0xFE, 0x69, 0xFF, 0x68, 0x46, 0xD1, 0x1A, 0x8D, 0xA3, 0x34,0x18, 0x8F,

0xA1, 0x36, 0xFD, 0x6A, 0x44, 0xD3, 0x45, 0xD2, 0xFC, 0x6B, 0xA0, 0x37, 0x19, 0x8E,0x41, 0xD6, 0xF8, 0x6F, 0xA4, 0x33, 0x1D,

0x8A, 0x1C, 0x8B, 0xA5, 0x32, 0xF9, 0x6E, 0x40, 0xD7,0xFB, 0x6C, 0x42, 0xD5, 0x1E, 0x89, 0xA7, 0x30, 0xA6, 0x31, 0x1F, 0x88,

0x43, 0xD4, 0xFA, 0x6D,0xF3, 0x64, 0x4A, 0xDD, 0x16, 0x81, 0xAF, 0x38, 0xAE, 0x39, 0x17, 0x80, 0x4B, 0xDC, 0xF2, 0x65,0x49,

0xDE, 0xF0, 0x67, 0xAC, 0x3B, 0x15, 0x82, 0x14, 0x83, 0xAD, 0x3A, 0xF1, 0x66, 0x48, 0xDF,0x10, 0x87, 0xA9, 0x3E, 0xF5, 0x62,

0x4C, 0xDB, 0x4D, 0xDA, 0xF4, 0x63, 0xA8, 0x3F, 0x11, 0x86, 0xAA, 0x3D, 0x13, 0x84, 0x4F, 0xD8, 0xF6, 0x61, 0xF7, 0x60, 0x4E,

0xD9, 0x12, 0x85, 0xAB, 0x3C

};

uint8_t calcCRC(uint8_t * buffer, uint8_t length){

uint8_t temp = *buffer++;

while(--length){

temp = *buffer++ ^ crcTable[temp];

}

return crcTable[temp];

}

CRC-8 Calculate(x8+1)
//poly = x8+1

//The value of table check is the same as the result of polynomial calculation

// The calculation value of the polynomial is the same as itself

uint8_t calcCRC(uint8_t * buffer, uint8_t length){

uint8_t temp = *buffer++;

while(--length){

temp = *buffer++ ^ temp;

}

return temp;

}

23

CRC-6 Calculate

#define DATA_TOTAL_BIT_LENGTH 47

//poly = x6+x1+1
uint8_t tableCRC6[64] = {
0x00, 0x03, 0x06, 0x05, 0x0C, 0x0F, 0x0A, 0x09, 0x18, 0x1B, 0x1E, 0x1D, 0x14, 0x17, 0x12, 0x11, 0x30, 0x33, 0x36, 0x35, 0x3C, 0x3F, 0x3A, 0x39, 0x28, 0x2B, 0x2E, 0x2D, 0x24, 0x27, 0x22, 0x21, 0x23,
0x20, 0x25, 0x26, 0x2F, 0x2C, 0x29, 0x2A, 0x3B, 0x38, 0x3D, 0x3E, 0x37, 0x34, 0x31, 0x32, 0x13, 0x10, 0x15, 0x16, 0x1F, 0x1C, 0x19, 0x1A, 0x0B, 0x08, 0x0D, 0x0E, 0x07, 0x04, 0x01, 0x02
};

uint8_t calcBissCCRC(uint8_t buffer[]){
 #define CRC_BIT_LENGTH 6
 #define DATA_CRC_MASK ((1 << CRC_BIT_LENGTH) - 1)
 #define DATA_WITHOUT_CRC_BIT_LENGTH (DATA_TOTAL_BIT_LENGTH - CRC_BIT_LENGTH)
 #define TOP_BYTE_BITLENGTH (DATA_WITHOUT_CRC_BIT_LENGTH % CRC_BIT_LENGTH)
 #if TOP_BYTE_BITLENGTH == 0
 #undef TOP_BYTE_BITLENGTH
 #define TOP_BYTE_BITLENGTH CRC_BIT_LENGTH
 #endif

 uint32_t firstWord = __REV(*(uint32_t *) buffer);
 #if DATA_WITHOUT_CRC_BIT_LENGTH > 32
 uint32_t secondWord = __REV(*(uint32_t *) (buffer + 4));
 #endif

 uint8_t crc = tableCRC6[firstWord >> (32 - TOP_BYTE_BITLENGTH)];

 #undef CURRENT_CRC_BIT_LENGTH
 #define CURRENT_CRC_BIT_LENGTH (TOP_BYTE_BITLENGTH + CRC_BIT_LENGTH * 1)
 #if DATA_WITHOUT_CRC_BIT_LENGTH - CURRENT_CRC_BIT_LENGTH >= 0
 crc = tableCRC6[crc ^ (firstWord >> (32 - CURRENT_CRC_BIT_LENGTH) & DATA_CRC_MASK)];
 #endif

 #undef CURRENT_CRC_BIT_LENGTH
 #define CURRENT_CRC_BIT_LENGTH (TOP_BYTE_BITLENGTH + CRC_BIT_LENGTH * 2)
 #if DATA_WITHOUT_CRC_BIT_LENGTH - CURRENT_CRC_BIT_LENGTH >= 0
 crc = tableCRC6[crc ^ (firstWord >> (32 - CURRENT_CRC_BIT_LENGTH) & DATA_CRC_MASK)];
 #endif

 #undef CURRENT_CRC_BIT_LENGTH
 #define CURRENT_CRC_BIT_LENGTH (TOP_BYTE_BITLENGTH + CRC_BIT_LENGTH * 3)
 #if DATA_WITHOUT_CRC_BIT_LENGTH - CURRENT_CRC_BIT_LENGTH >= 0
 crc = tableCRC6[crc ^ (firstWord >> (32 - CURRENT_CRC_BIT_LENGTH) & DATA_CRC_MASK)];
 #endif

 #undef CURRENT_CRC_BIT_LENGTH
 #define CURRENT_CRC_BIT_LENGTH (TOP_BYTE_BITLENGTH + CRC_BIT_LENGTH * 4)
 #if DATA_WITHOUT_CRC_BIT_LENGTH - CURRENT_CRC_BIT_LENGTH >= 0
 crc = tableCRC6[crc ^ (firstWord >> (32 - CURRENT_CRC_BIT_LENGTH) & DATA_CRC_MASK)];
 #endif

 #undef CURRENT_CRC_BIT_LENGTH
 #define CURRENT_CRC_BIT_LENGTH (TOP_BYTE_BITLENGTH + CRC_BIT_LENGTH * 5)
 #if DATA_WITHOUT_CRC_BIT_LENGTH - CURRENT_CRC_BIT_LENGTH >= 0
 #if 32 - CURRENT_CRC_BIT_LENGTH >= 0
 crc = tableCRC6[crc ^ (firstWord >> (32 - CURRENT_CRC_BIT_LENGTH) & DATA_CRC_MASK)];
 #elif 32 - CURRENT_CRC_BIT_LENGTH > -CRC_BIT_LENGTH
 crc = tableCRC6[crc ^ (((firstWord << -(32 - CURRENT_CRC_BIT_LENGTH)) & DATA_CRC_MASK) | (secondWord >> (64 - CURRENT_CRC_BIT_LENGTH)))];
 #else
 crc = tableCRC6[crc ^ (secondWord >> (64 - CURRENT_CRC_BIT_LENGTH) & DATA_CRC_MASK)];
 #endif
 #endif

 #undef CURRENT_CRC_BIT_LENGTH
 #define CURRENT_CRC_BIT_LENGTH (TOP_BYTE_BITLENGTH + CRC_BIT_LENGTH * 6)
 #if DATA_WITHOUT_CRC_BIT_LENGTH - CURRENT_CRC_BIT_LENGTH >= 0
 crc = tableCRC6[crc ^ (secondWord >> (64 - CURRENT_CRC_BIT_LENGTH) & DATA_CRC_MASK)];
 #endif

 #undef CURRENT_CRC_BIT_LENGTH
 #define CURRENT_CRC_BIT_LENGTH (TOP_BYTE_BITLENGTH + CRC_BIT_LENGTH * 7)
 #if DATA_WITHOUT_CRC_BIT_LENGTH - CURRENT_CRC_BIT_LENGTH >= 0
 crc = tableCRC6[crc ^ (secondWord >> (64 - CURRENT_CRC_BIT_LENGTH) & DATA_CRC_MASK)];
 #endif

 #undef CURRENT_CRC_BIT_LENGTH
 #define CURRENT_CRC_BIT_LENGTH (TOP_BYTE_BITLENGTH + CRC_BIT_LENGTH * 8)
 #if DATA_WITHOUT_CRC_BIT_LENGTH - CURRENT_CRC_BIT_LENGTH >= 0
 crc = tableCRC6[crc ^ (secondWord >> (64 - CURRENT_CRC_BIT_LENGTH) & DATA_CRC_MASK)];
 #endif

 #undef CURRENT_CRC_BIT_LENGTH
 #define CURRENT_CRC_BIT_LENGTH (TOP_BYTE_BITLENGTH + CRC_BIT_LENGTH * 9)
 #if DATA_WITHOUT_CRC_BIT_LENGTH - CURRENT_CRC_BIT_LENGTH >= 0
 crc = tableCRC6[crc ^ (secondWord >> (64 - CURRENT_CRC_BIT_LENGTH) & DATA_CRC_MASK)];
 #endif

 #if 32 - DATA_TOTAL_BIT_LENGTH >= 0
 crc = tableCRC6[crc ^ DATA_CRC_MASK ^ (firstWord >> (32 - DATA_TOTAL_BIT_LENGTH) & DATA_CRC_MASK)];
 #elif 32 - CURRENT_CRC_BIT_LENGTH > -CRC_BIT_LENGTH
 crc = tableCRC6[crc ^ DATA_CRC_MASK ^ (((firstWord << -(32 - DATA_TOTAL_BIT_LENGTH)) & DATA_CRC_MASK) | (secondWord >> (64 - DATA_TOTAL_BIT_LENGTH)))];
 #else
 crc = tableCRC6[crc ^ DATA_CRC_MASK ^ (secondWord >> (64 - DATA_TOTAL_BIT_LENGTH) & DATA_CRC_MASK)];
 #endif

 return crc;
}

24

Instruction:
This program can be applied to ARM series MCU, and can generate the fastest CRC-6 check through the compiler,

just modify DATA_TOTAL_BIT_LENGTH to the value of the corresponding model.

For example: 17M model to 47, 16 model to 30

Caution:
When called this function, a 32-bit read command is used for the buffer, requiring the buffer to be 4-byte aligned

(some core versions don’t support unaligned data read; Even with support for unaligned reads, the kernel consumes

more concatenation time).

For the reception of BISS-C, the first byte received will be a placeholder byte with ACK, and the position data starts

from the second byte, to read data and calculate CRC quickly, it is necessary to calculate CRC from the address

where the position data starts, and require the address to be 4-byte alignment data.

For example:
struct{
 uint8_t notUsedForAlignment[3]; //Only align data
 uint8_t placeholder; //The first placeholder byte of BISS-C is 0x82
 uint8_t buffer[8] __attribute__ ((aligned(4))); //Buffer of 4 bytes data align, for fast CRC
} receiveBuffer;

//Configure SPI and DMA
//Use &receiveBuffer.placeholder as the receiving address
//……

//CRC calculate
// Calculated using the receiveBuffer.buffer which is already 4-byte aligned
uint8_t crc = calcBissCCRC(receiveBuffer.buffer);

//The CRC result is equal to 0, indicating that the verification is passed
if (crc != 0){
 //crc validation failed
}

25

Revision history

Time Edition Description

2023/09/28 V0.1 Initial release

2024/01/05 V0.2 Add more sizes

2024/05/01 V0.3 Add standard drawing

Add colors of wires

2024/12/09 V0.4 Add rotor type with bonding

Add stator front/back install type

Change pin1 to left of connector

2024/12/22 V0.5 Add latch point of angle

 26

Beijing KingKong Technology Co., Ltd.

Address: No. 26, Rd. YongAn, Science and Technology Park, Changping District, Beijing, China

Website: https://kingkong.tech

Email: contact@kingkong.tech

Tel: +86-010-8011-1669

https://kingkong.tech/
mailto:contact@kingkong.tech

	Models
	Size
	Drawings
	Electrical connections
	Connectors
	Pin descriptions

	Parameters
	System
	Electrical
	Mechanical
	Environmental

	Features
	Maximum speed
	Environmental interference
	External magnetic field interference
	Accuracy

	Specification
	Format selection
	Calculation parameters
	SSI protocol interface
	BISS-C protocol interface
	RS485/RS422 protocol interface
	T485 protocol interface
	BUS (High speed bus) protocol interface
	Period sending protocol
	Status Bits

	Appendix
	CRC-8 Table(x8+x7+x4+x2+x1+1)
	CRC-8 Calculate(x8+1)
	CRC-6 Calculate

	Revision history

